
Deep Learning
8 Building Blocks of CNNs

Dr. Konda Reddy Mopuri
Dept. of Artificial Intelligence

IIT Hyderabad
Jan-May 2023

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 1

CNNs

Neurons are similar to that of MLP

Perform a linear (dot product) operation and have a nonlinearity
Architecture will have a differentiable loss function, backpropagation
is used
So, what changes?

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 2

CNNs

Neurons are similar to that of MLP
Perform a linear (dot product) operation and have a nonlinearity

Architecture will have a differentiable loss function, backpropagation
is used
So, what changes?

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 2

CNNs

Neurons are similar to that of MLP
Perform a linear (dot product) operation and have a nonlinearity

Architecture will have a differentiable loss function, backpropagation
is used

So, what changes?

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 2

CNNs

Neurons are similar to that of MLP
Perform a linear (dot product) operation and have a nonlinearity

Architecture will have a differentiable loss function, backpropagation
is used
So, what changes?

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 2

An MLP
Input is a vector

Series of densely connected hidden layers
Neurons in each layer are independent!

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 3

An MLP
Input is a vector
Series of densely connected hidden layers

Neurons in each layer are independent!

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 3

An MLP
Input is a vector
Series of densely connected hidden layers
Neurons in each layer are independent!

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 3

An MLP for processing an image

Say, we want to process a 200× 200 RGB image

Vectorizing leads to 200× 200× 3→ 120K neurons in the input layer
A hidden layer of same size leads to ≈ 1.44e10 weights → ≈ 58GB :-(

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 4

An MLP for processing an image

Say, we want to process a 200× 200 RGB image
Vectorizing leads to 200× 200× 3→ 120K neurons in the input layer

A hidden layer of same size leads to ≈ 1.44e10 weights → ≈ 58GB :-(

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 4

An MLP for processing an image

Say, we want to process a 200× 200 RGB image
Vectorizing leads to 200× 200× 3→ 120K neurons in the input layer
A hidden layer of same size leads to ≈ 1.44e10 weights → ≈ 58GB :-(

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 4

An MLP for processing an image

Full connectivity blows the number of weights → hardware limits,
overfitting, etc.

Flattening removes the structure

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 5

An MLP for processing an image

Full connectivity blows the number of weights → hardware limits,
overfitting, etc.
Flattening removes the structure

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 5

Large Signals

Have invariance in translation

Features may occur at different locations in the signal
Convolution incorporates this idea: Applies same linear operation at
all the locations and preserves the structure

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 6

Large Signals

Have invariance in translation
Features may occur at different locations in the signal

Convolution incorporates this idea: Applies same linear operation at
all the locations and preserves the structure

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 6

Large Signals

Have invariance in translation
Features may occur at different locations in the signal
Convolution incorporates this idea: Applies same linear operation at
all the locations and preserves the structure

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 6

Convolution

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 7

Convolution

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 8

Convolution

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 9

Convolution

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 10

Convolution

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 11

Convolution

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 12

Convolution

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 13

Convolution

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 14

Convolution

Preserves the structure

if the i/p is a 2D tensor → o/p is also a 2D tensor
There exist a relation between the locations of i/p and o/p values

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 15

Convolution

Preserves the structure
if the i/p is a 2D tensor → o/p is also a 2D tensor

There exist a relation between the locations of i/p and o/p values

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 15

Convolution

Preserves the structure
if the i/p is a 2D tensor → o/p is also a 2D tensor
There exist a relation between the locations of i/p and o/p values

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 15

Convolution

Let x = (x1, x2, . . . xW) is the input, k = (k1, k2, . . . kw) is the kernel

The result (x ~ k) of convolving x with k will be a 1D tensor of size
W − w + 1

(x ~ k)i =
w∑

j=1
xi−1+jkj

=(xi, . . . xi+w−1) · k

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 16

Convolution

Let x = (x1, x2, . . . xW) is the input, k = (k1, k2, . . . kw) is the kernel
The result (x ~ k) of convolving x with k will be a 1D tensor of size
W − w + 1

(x ~ k)i =
w∑

j=1
xi−1+jkj

=(xi, . . . xi+w−1) · k

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 16

Convolution
Powerful feature extractor

For instance, it can perform differential operation and look for
interesting patterns in the input

(0, 0, 0, 1, 2, 3, 4, 4, 4, 4) ~ (−1, 1) = (0, 0, 1, 1, 1, 1, 0, 0, 0)

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 17

Convolution
Powerful feature extractor
For instance, it can perform differential operation and look for
interesting patterns in the input

(0, 0, 0, 1, 2, 3, 4, 4, 4, 4) ~ (−1, 1) = (0, 0, 1, 1, 1, 1, 0, 0, 0)

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 17

Convolution
Powerful feature extractor
For instance, it can perform differential operation and look for
interesting patterns in the input

(0, 0, 0, 1, 2, 3, 4, 4, 4, 4) ~ (−1, 1) = (0, 0, 1, 1, 1, 1, 0, 0, 0)

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 17

Convolution

Powerful feature extractor
For instance, it can perform differential operation and look for
interesting patterns in the input

(0, 0, 1, 1, 0, 0.1, 0.2, 1, 1, 1, 0) ~ (1, 1) = (0, 1, 2, 1, 0.1, 0.3, 1.2, 2, 2, 1)

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 18

Convolution

Naturally generalizes to multiple dimensions

CNNs process 3D tensors of size C ×H ×W with kernels of size
C × h× w and result in 2D tensors of size H − h + 1×W − w + 1
Note that we generally refer to these inputs as 2D signal (despite
having C channels) (Why?)

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 19

Convolution

Naturally generalizes to multiple dimensions
CNNs process 3D tensors of size C ×H ×W with kernels of size
C × h× w and result in 2D tensors of size H − h + 1×W − w + 1

Note that we generally refer to these inputs as 2D signal (despite
having C channels) (Why?)

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 19

Convolution

Naturally generalizes to multiple dimensions
CNNs process 3D tensors of size C ×H ×W with kernels of size
C × h× w and result in 2D tensors of size H − h + 1×W − w + 1
Note that we generally refer to these inputs as 2D signal (despite
having C channels) (Why?)

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 19

2D Convolution

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 20

2D Convolution

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 21

2D Convolution

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 22

2D Convolution

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 23

2D Convolution

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 24

2D Convolution

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 25

2D Convolution

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 26

2D Convolution

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 27

2D Convolution

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 28

2D Convolution

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 29

2D Convolution

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 30

2D Convolution

Kernel is not convolved in the channel dimension

Another way to interpret convolution is that an affine function is
applied on an input block of size C × h× w

Same affine function is applied on all such blocks in the input

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 31

2D Convolution

Kernel is not convolved in the channel dimension
Another way to interpret convolution is that an affine function is
applied on an input block of size C × h× w

Same affine function is applied on all such blocks in the input

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 31

2D Convolution

Kernel is not convolved in the channel dimension
Another way to interpret convolution is that an affine function is
applied on an input block of size C × h× w

Same affine function is applied on all such blocks in the input

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 31

2D Convolution

Kernel is not convolved in the channel dimension
Another way to interpret convolution is that an affine function is
applied on an input block of size C × h× w

Same affine function is applied on all such blocks in the input

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 32

Convolution

Preserves the input structure

1D signal outputs 1D signal, 2D signal outputs 2D signal
Adjacent components in o/p are influenced by adjacent parts in the i/p

If the channel dimension has a metric meaning (e.g. time) 3D
convolution can be employed (e.g. frames in a video)

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 33

Convolution

Preserves the input structure
1D signal outputs 1D signal, 2D signal outputs 2D signal

Adjacent components in o/p are influenced by adjacent parts in the i/p
If the channel dimension has a metric meaning (e.g. time) 3D
convolution can be employed (e.g. frames in a video)

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 33

Convolution

Preserves the input structure
1D signal outputs 1D signal, 2D signal outputs 2D signal
Adjacent components in o/p are influenced by adjacent parts in the i/p

If the channel dimension has a metric meaning (e.g. time) 3D
convolution can be employed (e.g. frames in a video)

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 33

Convolution

Preserves the input structure
1D signal outputs 1D signal, 2D signal outputs 2D signal
Adjacent components in o/p are influenced by adjacent parts in the i/p

If the channel dimension has a metric meaning (e.g. time) 3D
convolution can be employed (e.g. frames in a video)

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 33

Terminology in Convolution

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 34

Convolution function in PyTorch

F.conv2d(input, weight, bias=None, stride=1,
padding=0, dilation=1, groups=1)

weight is D × C × h× w dimensional kernels
bias D dimensional
input is N × C ×H ×W dimensional signal
Output is N ×D × (H − h + 1)× (W − w + 1) tensor
Autograd compliant

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 35

Convolution function in PyTorch

F.conv2d(input, weight, bias=None, stride=1,
padding=0, dilation=1, groups=1)

weight is D × C × h× w dimensional kernels

bias D dimensional
input is N × C ×H ×W dimensional signal
Output is N ×D × (H − h + 1)× (W − w + 1) tensor
Autograd compliant

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 35

Convolution function in PyTorch

F.conv2d(input, weight, bias=None, stride=1,
padding=0, dilation=1, groups=1)

weight is D × C × h× w dimensional kernels
bias D dimensional

input is N × C ×H ×W dimensional signal
Output is N ×D × (H − h + 1)× (W − w + 1) tensor
Autograd compliant

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 35

Convolution function in PyTorch

F.conv2d(input, weight, bias=None, stride=1,
padding=0, dilation=1, groups=1)

weight is D × C × h× w dimensional kernels
bias D dimensional
input is N × C ×H ×W dimensional signal

Output is N ×D × (H − h + 1)× (W − w + 1) tensor
Autograd compliant

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 35

Convolution function in PyTorch

F.conv2d(input, weight, bias=None, stride=1,
padding=0, dilation=1, groups=1)

weight is D × C × h× w dimensional kernels
bias D dimensional
input is N × C ×H ×W dimensional signal
Output is N ×D × (H − h + 1)× (W − w + 1) tensor

Autograd compliant

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 35

Convolution function in PyTorch

F.conv2d(input, weight, bias=None, stride=1,
padding=0, dilation=1, groups=1)

weight is D × C × h× w dimensional kernels
bias D dimensional
input is N × C ×H ×W dimensional signal
Output is N ×D × (H − h + 1)× (W − w + 1) tensor
Autograd compliant

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 35

Convolution function in PyTorch

input = torch.empty(128, 3, 20, 20).normal_()
weight = torch.empty(5, 3, 5, 5).normal_()
bias = torch.empty(5).normal_()
output = F.conv2d(input, weight, bias)
output.size()
torch.Size([128, 5, 16, 16])

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 36

Look/Access the filters

weight[0,0]
tensor([[-0.6974, 0.1342, -0.2632, -0.4672, 0.1827],
[-0.1184, -0.2164, 0.2772, -0.1099, 0.0103],
[-0.8272, 0.3580, 0.2398, -0.5795,-0.9472],
[-1.1734, -0.1019, 0.7394, 0.3342, 0.1699],
[1.9271, 0.1250, 0.4222, 0.2014, 1.1100]])

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 37

Conv layer in PyTorch

Class torch.nn.Conv2d(in_channels, out_channels,
kernel_size, stride=1, padding=0, dilation=1, groups=1,
bias=True)

kernel_size can be either a pair (h, w) or a single value k
interpreted as (k, k).
Encloses the convolution as a module
Initializes the kernel parameters and biases as random

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 38

Conv layer in PyTorch

Class torch.nn.Conv2d(in_channels, out_channels,
kernel_size, stride=1, padding=0, dilation=1, groups=1,
bias=True)

kernel_size can be either a pair (h, w) or a single value k
interpreted as (k, k).

Encloses the convolution as a module
Initializes the kernel parameters and biases as random

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 38

Conv layer in PyTorch

Class torch.nn.Conv2d(in_channels, out_channels,
kernel_size, stride=1, padding=0, dilation=1, groups=1,
bias=True)

kernel_size can be either a pair (h, w) or a single value k
interpreted as (k, k).
Encloses the convolution as a module

Initializes the kernel parameters and biases as random

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 38

Conv layer in PyTorch

Class torch.nn.Conv2d(in_channels, out_channels,
kernel_size, stride=1, padding=0, dilation=1, groups=1,
bias=True)

kernel_size can be either a pair (h, w) or a single value k
interpreted as (k, k).
Encloses the convolution as a module
Initializes the kernel parameters and biases as random

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 38

Conv layer in PyTorch

f = nn.Conv2d(in_channels = 3, out_channels = 5,
kernel_size = (2, 3))
for n, p in f.named_parameters():
...print(n, p.size())

>>weight torch.Size([5, 3, 2, 3])
>>bias torch.Size([5])

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 39

Conv layer in PyTorch

f = nn.Conv2d(in_channels = 3, out_channels = 5,
kernel_size = (2, 3))
for n, p in f.named_parameters():
...print(n, p.size())

>>weight torch.Size([5, 3, 2, 3])
>>bias torch.Size([5])

input = torch.empty(128, 3, 28, 28).normal_()
output = f(input)
output.size()
>>torch.Size([128, 5, 27, 26])

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 40

Padding in Convolution

Adds zeros around the input

Takes cares of size reduction after convolution
Instead of zeros, one may pad with signal values at the edges

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 41

Padding in Convolution

Adds zeros around the input
Takes cares of size reduction after convolution

Instead of zeros, one may pad with signal values at the edges

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 41

Padding in Convolution

Adds zeros around the input
Takes cares of size reduction after convolution
Instead of zeros, one may pad with signal values at the edges

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 41

Padding in Convolution

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 42

Padding in Convolution

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 43

Stride in Convolution

Specifies the step size taken while performing convolution

Default value is 1, i.e., move the kernel across the signal densely
(without skipping)

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 44

Stride in Convolution

Specifies the step size taken while performing convolution
Default value is 1, i.e., move the kernel across the signal densely
(without skipping)

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 44

Padding and Stride in Convolution

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 45

Dilation in Convolution

Manipulates the size of the kernel via expanding its size without
adding weights.

In other words, it inserts 0s in between the kernel values

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 46

Dilation in Convolution

Manipulates the size of the kernel via expanding its size without
adding weights.
In other words, it inserts 0s in between the kernel values

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 46

Output size of the Convolution

Input width - W, Kernel size - k, Padding - p, and stride - s

Output width = W −k+2p
s + 1 (similarly for the height)

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 47

Output size of the Convolution

Input width - W, Kernel size - k, Padding - p, and stride - s
Output width = W −k+2p

s + 1 (similarly for the height)

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 47

Without Dilation

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 48

Dilation (2, 2)

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 49

Dilation

Expands the kernel by adding rows and columns of zeros

Default value for dilation is 1, i.e., no zeros placed
Any higher value of dilation makes the kernel sparse
Dilation increases the receptive field
It is referred to as ‘atrous’ convolution

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 50

Dilation

Expands the kernel by adding rows and columns of zeros
Default value for dilation is 1, i.e., no zeros placed

Any higher value of dilation makes the kernel sparse
Dilation increases the receptive field
It is referred to as ‘atrous’ convolution

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 50

Dilation

Expands the kernel by adding rows and columns of zeros
Default value for dilation is 1, i.e., no zeros placed
Any higher value of dilation makes the kernel sparse

Dilation increases the receptive field
It is referred to as ‘atrous’ convolution

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 50

Dilation

Expands the kernel by adding rows and columns of zeros
Default value for dilation is 1, i.e., no zeros placed
Any higher value of dilation makes the kernel sparse
Dilation increases the receptive field

It is referred to as ‘atrous’ convolution

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 50

Dilation

Expands the kernel by adding rows and columns of zeros
Default value for dilation is 1, i.e., no zeros placed
Any higher value of dilation makes the kernel sparse
Dilation increases the receptive field
It is referred to as ‘atrous’ convolution

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 50

Pooling

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 51

Pooling

Groups multiple activations and replaces by a representative one

Reduces the dimensionality of the signal progressively → considers
non-overlapping stride
Also called sub-sampling layer
Generally found between two convolution layers (and parameter free)

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 52

Pooling

Groups multiple activations and replaces by a representative one
Reduces the dimensionality of the signal progressively → considers
non-overlapping stride

Also called sub-sampling layer
Generally found between two convolution layers (and parameter free)

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 52

Pooling

Groups multiple activations and replaces by a representative one
Reduces the dimensionality of the signal progressively → considers
non-overlapping stride
Also called sub-sampling layer

Generally found between two convolution layers (and parameter free)

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 52

Pooling

Groups multiple activations and replaces by a representative one
Reduces the dimensionality of the signal progressively → considers
non-overlapping stride
Also called sub-sampling layer
Generally found between two convolution layers (and parameter free)

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 52

Max Pooling

Standard in CNNs

Computes maximum value over a non-overlapping blocks in the input

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 53

Max Pooling

Standard in CNNs
Computes maximum value over a non-overlapping blocks in the input

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 53

Average Pooling

Computes the average of the receptive field

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 54

Pooling in 2D

Same as 1D, but the receptive field is 2D and non-overlapping

Figure credits: Preston Hoang and Quora
Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 55

Pooling in 2D

Contrary to Convolution, Pooling applies channel wise

No reduction in number of channels, only spatial size reduction

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 56

Pooling in 2D

Contrary to Convolution, Pooling applies channel wise
No reduction in number of channels, only spatial size reduction

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 56

Pooling provides weak invariance

Operation is invariant to any permutation within the block

Withstands deformations caused by local translations

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 57

Pooling provides weak invariance

Operation is invariant to any permutation within the block
Withstands deformations caused by local translations

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 57

Max_Pooling PyTorch

F.max_pool2d(input, kernel_size, stride=None, padding=0,
dilation=1, ceil_mode=False, return_indices=False)

Applies max pooling on each of the channels separately

input is N × C ×H ×W tensor
kernel_size is (h, w) or k

Result would be a tensor of size N × C × bH/hc × bW/wc

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 58

Max_Pooling PyTorch

F.max_pool2d(input, kernel_size, stride=None, padding=0,
dilation=1, ceil_mode=False, return_indices=False)

Applies max pooling on each of the channels separately
input is N × C ×H ×W tensor

kernel_size is (h, w) or k

Result would be a tensor of size N × C × bH/hc × bW/wc

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 58

Max_Pooling PyTorch

F.max_pool2d(input, kernel_size, stride=None, padding=0,
dilation=1, ceil_mode=False, return_indices=False)

Applies max pooling on each of the channels separately
input is N × C ×H ×W tensor
kernel_size is (h, w) or k

Result would be a tensor of size N × C × bH/hc × bW/wc

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 58

Max_Pooling PyTorch

F.max_pool2d(input, kernel_size, stride=None, padding=0,
dilation=1, ceil_mode=False, return_indices=False)

Applies max pooling on each of the channels separately
input is N × C ×H ×W tensor
kernel_size is (h, w) or k

Result would be a tensor of size N × C × bH/hc × bW/wc

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 58

Pooling in PyTorch

Default stride is the kernel size (for convolution, it is 1)

But, it can be modulated if required
Default padding is zero

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 59

Pooling in PyTorch

Default stride is the kernel size (for convolution, it is 1)
But, it can be modulated if required

Default padding is zero

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 59

Pooling in PyTorch

Default stride is the kernel size (for convolution, it is 1)
But, it can be modulated if required
Default padding is zero

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 59

Pooling Layer in PyTorch

class torch.nn.MaxPool2d(kernel_size, stride=None,
padding=0, dilation=1, return_indices=False,
ceil_mode=False)

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 60

Putting it all together

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 61

Architecture of a simple CNN

Figure credits: Adit Deshpande
Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 62

Architecture of a simple CNN

Initially Conv layer with nonlinearity

Followed by a few Conv + Nonlinearity layers
Have Pooling layers in between Conv layers → reduce the feature map
size sufficiently
Vectorize and and fully connected layers

Figure credits: Adit Deshpande
Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 63

Architecture of a simple CNN

Initially Conv layer with nonlinearity
Followed by a few Conv + Nonlinearity layers

Have Pooling layers in between Conv layers → reduce the feature map
size sufficiently
Vectorize and and fully connected layers

Figure credits: Adit Deshpande
Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 63

Architecture of a simple CNN

Initially Conv layer with nonlinearity
Followed by a few Conv + Nonlinearity layers
Have Pooling layers in between Conv layers → reduce the feature map
size sufficiently

Vectorize and and fully connected layers

Figure credits: Adit Deshpande
Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 63

Architecture of a simple CNN

Initially Conv layer with nonlinearity
Followed by a few Conv + Nonlinearity layers
Have Pooling layers in between Conv layers → reduce the feature map
size sufficiently
Vectorize and and fully connected layers

Figure credits: Adit Deshpande
Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 63

Architecture of a simple CNN

INPUT -> [[CONV -> RELU] *N -> POOL]*M -> [FC->RELU]*K ->
FC

Figure credits: Adit Deshpande
Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 64

Architecture of a simple CNN

INPUT -> [[CONV -> RELU] *N -> POOL]*M -> [FC->RELU]*K ->
FC

Figure credits: Adit Deshpande
Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 65

Architecture of a simple CNN

INPUT -> [[CONV -> RELU] *N -> POOL]*M -> [FC->RELU]*K ->
FC

Figure credits: Adit Deshpande
Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 66

Case study: LeNet-like architecture

input size/ layer information output size # parameters # products
1 × 28 × 28

nn.Conv2d(1, 32, kernel_size=5)

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 67

Case study: LeNet-like architecture

input size/ layer information output size # parameters # products
1 × 28 × 28 32 × 24 × 24

nn.Conv2d(1, 32, kernel_size=5)

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 68

Case study: LeNet-like architecture

input size/ layer information output size # parameters # products
1 × 28 × 28 32 × 24 × 24 32.(52 + 1)

nn.Conv2d(1, 32, kernel_size=5) = 832

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 69

Case study: LeNet-like architecture

input size/ layer information output size # parameters # products
1 × 28 × 28 32 × 24 × 24 32.(52 + 1) 32.242.52

nn.Conv2d(1, 32, kernel_size=5) = 832 = 460800
32 × 24 × 24

F.max_pool2d(., kernel_size=3)

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 70

Case study: LeNet-like architecture

input size/ layer information output size # parameters # products
1 × 28 × 28 32 × 24 × 24 32.(52 + 1) 32.242.52

nn.Conv2d(1, 32, kernel_size=5) = 832 = 460800
32 × 24 × 24

F.max_pool2d(., kernel_size=3) 32 × 8 × 8 0 0

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 71

Case study: LeNet-like architecture

input size/ layer information output size # parameters # products
1 × 28 × 28 32 × 24 × 24 32.(52 + 1) 32.242.52

nn.Conv2d(1, 32, kernel_size=5) = 832 = 460800
32 × 24 × 24

F.max_pool2d(., kernel_size=3) 32 × 8 × 8 0 0
32 × 8 × 8 / F.relu(.) 32 × 8 × 8 0 0

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 72

Case study: LeNet-like architecture

input size/ layer information output size # parameters # products
1 × 28 × 28 32 × 24 × 24 32.(52 + 1) 32.242.52

nn.Conv2d(1, 32, kernel_size=5) = 832 = 460800
32 × 24 × 24

F.max_pool2d(., kernel_size=3) 32 × 8 × 8 0 0
32 × 8 × 8 / F.relu(.) 32 × 8 × 8 0 0

32 × 8 × 8
nn.conv2d(32, 64, kernel_size=5)

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 73

Case study: LeNet-like architecture

input size/ layer information output size # parameters # products
1 × 28 × 28 32 × 24 × 24 32.(52 + 1) 32.242.52

nn.Conv2d(1, 32, kernel_size=5) = 832 = 460800
32 × 24 × 24

F.max_pool2d(., kernel_size=3) 32 × 8 × 8 0 0
32 × 8 × 8 / F.relu(.) 32 × 8 × 8 0 0

32 × 8 × 8
nn.conv2d(32, 64, kernel_size=5) 64 × 4 × 4

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 74

Case study: LeNet-like architecture

input size/ layer information output size # parameters # products
1 × 28 × 28 32 × 24 × 24 32.(52 + 1) 32.242.52

nn.Conv2d(1, 32, kernel_size=5) = 832 = 460800
32 × 24 × 24

F.max_pool2d(., kernel_size=3) 32 × 8 × 8 0 0
32 × 8 × 8 / F.relu(.) 32 × 8 × 8 0 0

32 × 8 × 8 64.(32.52 + 1)
nn.conv2d(32, 64, kernel_size=5) 64 × 4 × 4 = 51264

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 75

Case study: LeNet-like architecture

input size/ layer information output size # parameters # products
1 × 28 × 28 32 × 24 × 24 32.(52 + 1) 32.242.52

nn.Conv2d(1, 32, kernel_size=5) = 832 = 460800
32 × 24 × 24

F.max_pool2d(., kernel_size=3) 32 × 8 × 8 0 0
32 × 8 × 8 / F.relu(.) 32 × 8 × 8 0 0

32 × 8 × 8 64.(32.52 + 1) 64.32.42.52

nn.conv2d(32, 64, kernel_size=5) 64 × 4 × 4 = 51264 = 819200

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 76

Case study: LeNet-like architecture

input size/ layer information output size # parameters # products
1 × 28 × 28 32 × 24 × 24 32.(52 + 1) 32.242.52

nn.Conv2d(1, 32, kernel_size=5) = 832 = 460800
32 × 24 × 24

F.max_pool2d(., kernel_size=3) 32 × 8 × 8 0 0
32 × 8 × 8 / F.relu(.) 32 × 8 × 8 0 0

32 × 8 × 8 64.(32.52 + 1) 64.32.42.52

nn.conv2d(32, 64, kernel_size=5) 64 × 4 × 4 = 51264 = 819200
64 × 4 × 4

F.max_pool2d(., kernel_size=2) 64 × 2 × 2 0 0

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 77

Case study: LeNet-like architecture

input size/ layer information output size # parameters # products
1 × 28 × 28 32 × 24 × 24 32.(52 + 1) 32.242.52

nn.Conv2d(1, 32, kernel_size=5) = 832 = 460800
32 × 24 × 24

F.max_pool2d(., kernel_size=3) 32 × 8 × 8 0 0
32 × 8 × 8 / F.relu(.) 32 × 8 × 8 0 0

32 × 8 × 8 64.(32.52 + 1) 64.32.42.52

nn.conv2d(32, 64, kernel_size=5) 64 × 4 × 4 = 51264 = 819200
64 × 4 × 4

F.max_pool2d(., kernel_size=2) 64 × 2 × 2 0 0
64 × 2 × 2 / F.relu(.) 64 × 2 × 2 0 0

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 78

Case study: LeNet-like architecture

input size/ layer information output size # parameters # products
1 × 28 × 28 32 × 24 × 24 32.(52 + 1) 32.242.52

nn.Conv2d(1, 32, kernel_size=5) = 832 = 460800
32 × 24 × 24

F.max_pool2d(., kernel_size=3) 32 × 8 × 8 0 0
32 × 8 × 8 / F.relu(.) 32 × 8 × 8 0 0

32 × 8 × 8 64.(32.52 + 1) 64.32.42.52

nn.conv2d(32, 64, kernel_size=5) 64 × 4 × 4 = 51264 = 819200
64 × 4 × 4

F.max_pool2d(., kernel_size=2) 64 × 2 × 2 0 0
64 × 2 × 2 / F.relu(.) 64 × 2 × 2 0 0

64 × 2 × 2 256 0 0
x.view(-1,256)

256
nn.Linear(256,200) 200

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 79

Case study: LeNet-like architecture

input size/ layer information output size # parameters # products
1 × 28 × 28 32 × 24 × 24 32.(52 + 1) 32.242.52

nn.Conv2d(1, 32, kernel_size=5) = 832 = 460800
32 × 24 × 24

F.max_pool2d(., kernel_size=3) 32 × 8 × 8 0 0
32 × 8 × 8 / F.relu(.) 32 × 8 × 8 0 0

32 × 8 × 8 64.(32.52 + 1) 64.32.42.52

nn.conv2d(32, 64, kernel_size=5) 64 × 4 × 4 = 51264 = 819200
64 × 4 × 4

F.max_pool2d(., kernel_size=2) 64 × 2 × 2 0 0
64 × 2 × 2 / F.relu(.) 64 × 2 × 2 0 0

64 × 2 × 2 256 0 0
x.view(-1,256)

256
nn.Linear(256,200) 200 200(256+1)=51400 200.256=51200

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 80

Case study: LeNet-like architecture

input size/ layer information output size # parameters # products
1 × 28 × 28 32 × 24 × 24 32.(52 + 1) 32.242.52

nn.Conv2d(1, 32, kernel_size=5) = 832 = 460800
F.max_pool2d(., kernel_size=3) 32 × 8 × 8 0 0

32 × 8 × 8 / F.relu(.) 32 × 8 × 8 0 0
32 × 8 × 8 64.(32.52 + 1) 64.32.42.52

nn.conv2d(32, 64, kernel_size=5) 64 × 4 × 4 = 51264 = 819200
64 × 4 × 4

F.max_pool2d(., kernel_size=2) 64 × 2 × 2 0 0
64 × 2 × 2 / F.relu(.) 64 × 2 × 2 0 0

64 × 2 × 2 256 0 0
x.view(-1,256)

256 0 0 0
nn.Linear(256,200) 200 200(256+1)=51400 200.256=51200

200 / F.relu(.) 200 0 0
200 0 0 0

nn.Linear(200,10) 10 10(200+1)=2010 10.200=2000

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 81

Recent architectures are far more sophisticated

Note that LeNet is a classical architecture and does not reflect the
recent CNNs in complexity

Recent CNN architectures are far more sophisticated [Contents of the
next lecture(s)]

More depth
Machinery to handle the depth

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 82

Recent architectures are far more sophisticated

Note that LeNet is a classical architecture and does not reflect the
recent CNNs in complexity
Recent CNN architectures are far more sophisticated [Contents of the
next lecture(s)]

More depth
Machinery to handle the depth

Dr. Konda Reddy Mopuri dl - 8/ Building Blocks of CNNs 82

