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CNNs

Neurons are similar to that of MLP

Perform a linear (dot product) operation and have a nonlinearity
Architecture will have a differentiable loss function, backpropagation
is used
So, what changes?
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An MLP
Input is a vector

Series of densely connected hidden layers
Neurons in each layer are independent!
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An MLP for processing an image

Say, we want to process a 200× 200 RGB image

Vectorizing leads to 200× 200× 3→ 120K neurons in the input layer
A hidden layer of same size leads to ≈ 1.44e10 weights → ≈ 58GB :-(
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An MLP for processing an image

Full connectivity blows the number of weights → hardware limits,
overfitting, etc.

Flattening removes the structure
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Large Signals

Have invariance in translation

Features may occur at different locations in the signal
Convolution incorporates this idea: Applies same linear operation at
all the locations and preserves the structure
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Convolution
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Convolution

Preserves the structure

if the i/p is a 2D tensor → o/p is also a 2D tensor
There exist a relation between the locations of i/p and o/p values
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Convolution

Let x = (x1, x2, . . . xW ) is the input, k = (k1, k2, . . . kw) is the kernel

The result (x ~ k) of convolving x with k will be a 1D tensor of size
W − w + 1

(x ~ k)i =
w∑

j=1
xi−1+jkj

=(xi, . . . xi+w−1) · k
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Convolution
Powerful feature extractor

For instance, it can perform differential operation and look for
interesting patterns in the input

(0, 0, 0, 1, 2, 3, 4, 4, 4, 4) ~ (−1, 1) = (0, 0, 1, 1, 1, 1, 0, 0, 0)
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Convolution

Powerful feature extractor
For instance, it can perform differential operation and look for
interesting patterns in the input

(0, 0, 1, 1, 0, 0.1, 0.2, 1, 1, 1, 0) ~ (1, 1) = (0, 1, 2, 1, 0.1, 0.3, 1.2, 2, 2, 1)
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Convolution

Naturally generalizes to multiple dimensions

CNNs process 3D tensors of size C ×H ×W with kernels of size
C × h× w and result in 2D tensors of size H − h + 1×W − w + 1
Note that we generally refer to these inputs as 2D signal (despite
having C channels) (Why?)
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2D Convolution
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2D Convolution

Kernel is not convolved in the channel dimension

Another way to interpret convolution is that an affine function is
applied on an input block of size C × h× w

Same affine function is applied on all such blocks in the input
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Convolution

Preserves the input structure

1D signal outputs 1D signal, 2D signal outputs 2D signal
Adjacent components in o/p are influenced by adjacent parts in the i/p

If the channel dimension has a metric meaning (e.g. time) 3D
convolution can be employed (e.g. frames in a video)
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Terminology in Convolution
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Convolution function in PyTorch

F.conv2d(input, weight, bias=None, stride=1,
padding=0, dilation=1, groups=1)

weight is D × C × h× w dimensional kernels
bias D dimensional
input is N × C ×H ×W dimensional signal
Output is N ×D × (H − h + 1)× (W − w + 1) tensor
Autograd compliant
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Convolution function in PyTorch

input = torch.empty(128, 3, 20, 20).normal_()
weight = torch.empty(5, 3, 5, 5).normal_()
bias = torch.empty(5).normal_()
output = F.conv2d(input, weight, bias)
output.size()
torch.Size([128, 5, 16, 16])
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Look/Access the filters

weight[0,0]
tensor([[-0.6974, 0.1342, -0.2632, -0.4672, 0.1827],
[-0.1184, -0.2164, 0.2772, -0.1099, 0.0103],
[-0.8272, 0.3580, 0.2398, -0.5795,-0.9472],
[-1.1734, -0.1019, 0.7394, 0.3342, 0.1699],
[ 1.9271, 0.1250, 0.4222, 0.2014, 1.1100]])
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Conv layer in PyTorch

Class torch.nn.Conv2d(in_channels, out_channels,
kernel_size, stride=1, padding=0, dilation=1, groups=1,
bias=True)

kernel_size can be either a pair (h, w) or a single value k
interpreted as (k, k).
Encloses the convolution as a module
Initializes the kernel parameters and biases as random
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Conv layer in PyTorch

f = nn.Conv2d(in_channels = 3, out_channels = 5,
kernel_size = (2, 3))
for n, p in f.named_parameters():
...print(n, p.size())

>>weight torch.Size([5, 3, 2, 3])
>>bias torch.Size([5])
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Conv layer in PyTorch

f = nn.Conv2d(in_channels = 3, out_channels = 5,
kernel_size = (2, 3))
for n, p in f.named_parameters():
...print(n, p.size())

>>weight torch.Size([5, 3, 2, 3])
>>bias torch.Size([5])

input = torch.empty(128, 3, 28, 28).normal_()
output = f(input)
output.size()
>>torch.Size([128, 5, 27, 26])
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Padding in Convolution

Adds zeros around the input

Takes cares of size reduction after convolution
Instead of zeros, one may pad with signal values at the edges
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Padding in Convolution
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Stride in Convolution

Specifies the step size taken while performing convolution

Default value is 1, i.e., move the kernel across the signal densely
(without skipping)
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Padding and Stride in Convolution
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Dilation in Convolution

Manipulates the size of the kernel via expanding its size without
adding weights.

In other words, it inserts 0s in between the kernel values
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Output size of the Convolution

Input width - W, Kernel size - k, Padding - p, and stride - s

Output width = W −k+2p
s + 1 (similarly for the height)
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Without Dilation
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Dilation (2, 2)
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Dilation

Expands the kernel by adding rows and columns of zeros

Default value for dilation is 1, i.e., no zeros placed
Any higher value of dilation makes the kernel sparse
Dilation increases the receptive field
It is referred to as ‘atrous’ convolution
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Pooling
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Pooling

Groups multiple activations and replaces by a representative one

Reduces the dimensionality of the signal progressively → considers
non-overlapping stride
Also called sub-sampling layer
Generally found between two convolution layers (and parameter free)
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Max Pooling

Standard in CNNs

Computes maximum value over a non-overlapping blocks in the input
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Average Pooling

Computes the average of the receptive field
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Pooling in 2D

Same as 1D, but the receptive field is 2D and non-overlapping

Figure credits: Preston Hoang and Quora
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Pooling in 2D

Contrary to Convolution, Pooling applies channel wise

No reduction in number of channels, only spatial size reduction
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Pooling provides weak invariance

Operation is invariant to any permutation within the block

Withstands deformations caused by local translations
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Max_Pooling PyTorch

F.max_pool2d(input, kernel_size, stride=None, padding=0,
dilation=1, ceil_mode=False, return_indices=False)

Applies max pooling on each of the channels separately

input is N × C ×H ×W tensor
kernel_size is (h, w) or k

Result would be a tensor of size N × C × bH/hc × bW/wc
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Pooling in PyTorch

Default stride is the kernel size (for convolution, it is 1)

But, it can be modulated if required
Default padding is zero
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Pooling Layer in PyTorch

class torch.nn.MaxPool2d(kernel_size, stride=None,
padding=0, dilation=1, return_indices=False,
ceil_mode=False)
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Putting it all together
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Architecture of a simple CNN

Figure credits: Adit Deshpande
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Architecture of a simple CNN

Initially Conv layer with nonlinearity

Followed by a few Conv + Nonlinearity layers
Have Pooling layers in between Conv layers → reduce the feature map
size sufficiently
Vectorize and and fully connected layers

Figure credits: Adit Deshpande
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Architecture of a simple CNN

INPUT -> [[CONV -> RELU] *N -> POOL]*M -> [FC->RELU]*K ->
FC

Figure credits: Adit Deshpande
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Architecture of a simple CNN

INPUT -> [[CONV -> RELU] *N -> POOL]*M -> [FC->RELU]*K ->
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Case study: LeNet-like architecture

input size/ layer information output size # parameters # products
1 × 28 × 28

nn.Conv2d(1, 32, kernel_size=5)
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Case study: LeNet-like architecture

input size/ layer information output size # parameters # products
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nn.Conv2d(1, 32, kernel_size=5)
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Case study: LeNet-like architecture

input size/ layer information output size # parameters # products
1 × 28 × 28 32 × 24 × 24 32.(52 + 1)

nn.Conv2d(1, 32, kernel_size=5) = 832
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Case study: LeNet-like architecture

input size/ layer information output size # parameters # products
1 × 28 × 28 32 × 24 × 24 32.(52 + 1) 32.242.52

nn.Conv2d(1, 32, kernel_size=5) = 832 = 460800
32 × 24 × 24

F.max_pool2d(., kernel_size=3)
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Case study: LeNet-like architecture

input size/ layer information output size # parameters # products
1 × 28 × 28 32 × 24 × 24 32.(52 + 1) 32.242.52

nn.Conv2d(1, 32, kernel_size=5) = 832 = 460800
32 × 24 × 24

F.max_pool2d(., kernel_size=3) 32 × 8 × 8 0 0
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Case study: LeNet-like architecture

input size/ layer information output size # parameters # products
1 × 28 × 28 32 × 24 × 24 32.(52 + 1) 32.242.52

nn.Conv2d(1, 32, kernel_size=5) = 832 = 460800
32 × 24 × 24

F.max_pool2d(., kernel_size=3) 32 × 8 × 8 0 0
32 × 8 × 8 / F.relu(.) 32 × 8 × 8 0 0

32 × 8 × 8
nn.conv2d(32, 64, kernel_size=5)
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Case study: LeNet-like architecture

input size/ layer information output size # parameters # products
1 × 28 × 28 32 × 24 × 24 32.(52 + 1) 32.242.52

nn.Conv2d(1, 32, kernel_size=5) = 832 = 460800
32 × 24 × 24

F.max_pool2d(., kernel_size=3) 32 × 8 × 8 0 0
32 × 8 × 8 / F.relu(.) 32 × 8 × 8 0 0

32 × 8 × 8
nn.conv2d(32, 64, kernel_size=5) 64 × 4 × 4
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Case study: LeNet-like architecture

input size/ layer information output size # parameters # products
1 × 28 × 28 32 × 24 × 24 32.(52 + 1) 32.242.52

nn.Conv2d(1, 32, kernel_size=5) = 832 = 460800
32 × 24 × 24

F.max_pool2d(., kernel_size=3) 32 × 8 × 8 0 0
32 × 8 × 8 / F.relu(.) 32 × 8 × 8 0 0

32 × 8 × 8 64.(32.52 + 1)
nn.conv2d(32, 64, kernel_size=5) 64 × 4 × 4 = 51264
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Case study: LeNet-like architecture

input size/ layer information output size # parameters # products
1 × 28 × 28 32 × 24 × 24 32.(52 + 1) 32.242.52

nn.Conv2d(1, 32, kernel_size=5) = 832 = 460800
32 × 24 × 24

F.max_pool2d(., kernel_size=3) 32 × 8 × 8 0 0
32 × 8 × 8 / F.relu(.) 32 × 8 × 8 0 0

32 × 8 × 8 64.(32.52 + 1) 64.32.42.52

nn.conv2d(32, 64, kernel_size=5) 64 × 4 × 4 = 51264 = 819200
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Case study: LeNet-like architecture

input size/ layer information output size # parameters # products
1 × 28 × 28 32 × 24 × 24 32.(52 + 1) 32.242.52

nn.Conv2d(1, 32, kernel_size=5) = 832 = 460800
32 × 24 × 24

F.max_pool2d(., kernel_size=3) 32 × 8 × 8 0 0
32 × 8 × 8 / F.relu(.) 32 × 8 × 8 0 0

32 × 8 × 8 64.(32.52 + 1) 64.32.42.52

nn.conv2d(32, 64, kernel_size=5) 64 × 4 × 4 = 51264 = 819200
64 × 4 × 4

F.max_pool2d(., kernel_size=2) 64 × 2 × 2 0 0
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Case study: LeNet-like architecture

input size/ layer information output size # parameters # products
1 × 28 × 28 32 × 24 × 24 32.(52 + 1) 32.242.52

nn.Conv2d(1, 32, kernel_size=5) = 832 = 460800
32 × 24 × 24

F.max_pool2d(., kernel_size=3) 32 × 8 × 8 0 0
32 × 8 × 8 / F.relu(.) 32 × 8 × 8 0 0

32 × 8 × 8 64.(32.52 + 1) 64.32.42.52

nn.conv2d(32, 64, kernel_size=5) 64 × 4 × 4 = 51264 = 819200
64 × 4 × 4

F.max_pool2d(., kernel_size=2) 64 × 2 × 2 0 0
64 × 2 × 2 / F.relu(.) 64 × 2 × 2 0 0
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Case study: LeNet-like architecture

input size/ layer information output size # parameters # products
1 × 28 × 28 32 × 24 × 24 32.(52 + 1) 32.242.52

nn.Conv2d(1, 32, kernel_size=5) = 832 = 460800
32 × 24 × 24

F.max_pool2d(., kernel_size=3) 32 × 8 × 8 0 0
32 × 8 × 8 / F.relu(.) 32 × 8 × 8 0 0

32 × 8 × 8 64.(32.52 + 1) 64.32.42.52

nn.conv2d(32, 64, kernel_size=5) 64 × 4 × 4 = 51264 = 819200
64 × 4 × 4

F.max_pool2d(., kernel_size=2) 64 × 2 × 2 0 0
64 × 2 × 2 / F.relu(.) 64 × 2 × 2 0 0

64 × 2 × 2 256 0 0
x.view(-1,256)

256
nn.Linear(256,200) 200
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Case study: LeNet-like architecture

input size/ layer information output size # parameters # products
1 × 28 × 28 32 × 24 × 24 32.(52 + 1) 32.242.52

nn.Conv2d(1, 32, kernel_size=5) = 832 = 460800
32 × 24 × 24

F.max_pool2d(., kernel_size=3) 32 × 8 × 8 0 0
32 × 8 × 8 / F.relu(.) 32 × 8 × 8 0 0

32 × 8 × 8 64.(32.52 + 1) 64.32.42.52

nn.conv2d(32, 64, kernel_size=5) 64 × 4 × 4 = 51264 = 819200
64 × 4 × 4

F.max_pool2d(., kernel_size=2) 64 × 2 × 2 0 0
64 × 2 × 2 / F.relu(.) 64 × 2 × 2 0 0

64 × 2 × 2 256 0 0
x.view(-1,256)

256
nn.Linear(256,200) 200 200(256+1)=51400 200.256=51200
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Case study: LeNet-like architecture

input size/ layer information output size # parameters # products
1 × 28 × 28 32 × 24 × 24 32.(52 + 1) 32.242.52

nn.Conv2d(1, 32, kernel_size=5) = 832 = 460800
F.max_pool2d(., kernel_size=3) 32 × 8 × 8 0 0

32 × 8 × 8 / F.relu(.) 32 × 8 × 8 0 0
32 × 8 × 8 64.(32.52 + 1) 64.32.42.52

nn.conv2d(32, 64, kernel_size=5) 64 × 4 × 4 = 51264 = 819200
64 × 4 × 4

F.max_pool2d(., kernel_size=2) 64 × 2 × 2 0 0
64 × 2 × 2 / F.relu(.) 64 × 2 × 2 0 0

64 × 2 × 2 256 0 0
x.view(-1,256)

256 0 0 0
nn.Linear(256,200) 200 200(256+1)=51400 200.256=51200

200 / F.relu(.) 200 0 0
200 0 0 0

nn.Linear(200,10) 10 10(200+1)=2010 10.200=2000
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Recent architectures are far more sophisticated

Note that LeNet is a classical architecture and does not reflect the
recent CNNs in complexity

Recent CNN architectures are far more sophisticated [Contents of the
next lecture(s)]

More depth
Machinery to handle the depth
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